Technical data sheet #### APPLICATIONS: The check valves completely closes the passage of fluid circulating in one direction and leaving free the other. Preventing investment from circulation. #### ■ USE: Facilities for hot and cold water, sewage, septic tanks, oils and neutral chemicals. #### ■ TECHNICAL LIMITS: Working temperature range: 0º a 80ºC Maximum pressure: PN16 #### **■ FEATURES**: Valve design according UNE EN-12334 Flanges dimensions according UNE EN 1092-2 Face to face according to DIN 3202 - UNE EN 558-1 #### ■ INSTALLATION: The ball check valves are installed in horizontal position with the ball at the top, also vertical installation is possible as long as the flow is uphill. # BRØDR. FREBERG AS | SIZE | DN | L | н | øк | ØD | b | С | BOLTS | WEIGHT | |--------|-----|-----|-----|-----|-----|---|----|--------|--------| | 1 1/2" | 40 | 180 | 98 | 110 | 150 | 3 | 18 | 4xM16 | 7 | | 2" | 50 | 200 | 106 | 125 | 165 | 3 | 20 | 4xM16 | 7,5 | | 2 1/2" | 65 | 240 | 129 | 145 | 185 | 3 | 20 | 4xM16 | 11 | | 3" | 80 | 260 | 146 | 160 | 200 | 3 | 22 | 8xM16 | 15 | | 4" | 100 | 300 | 194 | 180 | 220 | 3 | 24 | 8xM16 | 22 | | 5" | 125 | 350 | 207 | 210 | 250 | 3 | 26 | 8xM16 | 34 | | 6" | 150 | 400 | 240 | 240 | 285 | 3 | 26 | 8xM20 | 46 | | 8" | 200 | 500 | 322 | 295 | 340 | 3 | 30 | 12xM20 | 90 | | 10" | 250 | 600 | 388 | 355 | 405 | 3 | 32 | 12xM24 | 163 | | 12" | 300 | 700 | 408 | 410 | 460 | 4 | 32 | 16xM24 | 230 | | 14" | 350 | 800 | 610 | 470 | 520 | 4 | 36 | 16xM24 | 350 | # Materials | N∘ | NAME | MATERIAL | QUALITY | |----|--------|-------------|--------------------| | 1 | Body | Cast Iron | EN-GJS-400 + Epoxy | | 2 | Ball | Steel + NBR | * | | 3 | Cover | Cast Iron | EN-GJS-400 + Epoxy | | 4 | Bolts | S.S. | AISI 304 | | 5 | Gasket | Rubber | NBR | ## Head loss The **head loss** is the **pressure drop** produced in a fluid as a result of frictions and the path change of the particles by itself and against pipe walls, valves and other accessories. To evaluate this losses the **flow factor (Kv)** is defined, that is a design factor that connect the height increment (Δh) or the pressure increment (ΔP) between the inlet and the outlet of the valve with the flow rate (Q). This coefficient is defined as the flow rate in cubic meters per hour [m^3/h] of water at 16°C with a pressure drop inside the valve of 1 bar. It's important to know the flow coefficient to measure adequately the valve is needed to accomplish the determined requests. # Flow factor (Kv) This Kv values were calculated using the following units: flow rate in m³/h and a pressure drop of 1 bar. | SIZE | DN | Kv | |--------|-----|------| | 1 1/2" | 40 | 90 | | 2" | 50 | 97 | | 2 1/2" | 65 | 176 | | 3" | 80 | 304 | | 4" | 100 | 617 | | 5" | 125 | 691 | | 6" | 150 | 1215 | | 8" | 200 | 3334 | | 10" | 250 | 4720 | | 12" | 300 | 6598 | | 14" | 350 | 6759 |