

Technical data sheet

APPLICATIONS:

The check valves completely closes the passage of fluid circulating in one direction and leaving free the other. Preventing investment from circulation.

■ USE:

Facilities for hot and cold water, sewage, septic tanks, oils and neutral chemicals.

■ TECHNICAL LIMITS:

Working temperature range: 0º a 80ºC

Maximum pressure: PN16

■ FEATURES:

Valve design according UNE EN-12334 Flanges dimensions according UNE EN 1092-2 Face to face according to DIN 3202 - UNE EN 558-1

■ INSTALLATION:

The ball check valves are installed in horizontal position with the ball at the top, also vertical installation is possible as long as the flow is uphill.

BRØDR. FREBERG AS

SIZE	DN	L	н	øк	ØD	b	С	BOLTS	WEIGHT
1 1/2"	40	180	98	110	150	3	18	4xM16	7
2"	50	200	106	125	165	3	20	4xM16	7,5
2 1/2"	65	240	129	145	185	3	20	4xM16	11
3"	80	260	146	160	200	3	22	8xM16	15
4"	100	300	194	180	220	3	24	8xM16	22
5"	125	350	207	210	250	3	26	8xM16	34
6"	150	400	240	240	285	3	26	8xM20	46
8"	200	500	322	295	340	3	30	12xM20	90
10"	250	600	388	355	405	3	32	12xM24	163
12"	300	700	408	410	460	4	32	16xM24	230
14"	350	800	610	470	520	4	36	16xM24	350

Materials

N∘	NAME	MATERIAL	QUALITY
1	Body	Cast Iron	EN-GJS-400 + Epoxy
2	Ball	Steel + NBR	*
3	Cover	Cast Iron	EN-GJS-400 + Epoxy
4	Bolts	S.S.	AISI 304
5	Gasket	Rubber	NBR

Head loss

The **head loss** is the **pressure drop** produced in a fluid as a result of frictions and the path change of the particles by itself and against pipe walls, valves and other accessories.

To evaluate this losses the **flow factor (Kv)** is defined, that is a design factor that connect the height increment (Δh) or the pressure increment (ΔP) between the inlet and the outlet of the valve with the flow rate (Q). This coefficient is defined as the flow rate in cubic meters per hour [m^3/h] of water at 16°C with a pressure drop inside the valve of 1 bar.

It's important to know the flow coefficient to measure adequately the valve is needed to accomplish the determined requests.

Flow factor (Kv)

This Kv values were calculated using the following units: flow rate in m³/h and a pressure drop of 1 bar.

SIZE	DN	Kv
1 1/2"	40	90
2"	50	97
2 1/2"	65	176
3"	80	304
4"	100	617
5"	125	691
6"	150	1215
8"	200	3334
10"	250	4720
12"	300	6598
14"	350	6759